Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400230, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501752

RESUMO

A series of 15 dyes based on the 2-phenylnaphtho[2,3-d]thiazole-4,9-dione scaffold and 1 compound based on the 2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline-5,10-dione scaffold are studied as photoinitiators. These compounds are used in two- and three-component high-performance photoinitiating systems for the free radical polymerization of trimethylolpropane triacrylate (TMPTA) and polyethylene glycol diacrylate (PEGDA) under sunlight. Remarkably, the conversion of TMPTA can reach ≈60% within 20 s, while PEGDA attains a 96% conversion within 90 s. To delve into the intricate chemical mechanisms governing the polymerization, an array of analytical techniques is employed. Specifically, UV-vis absorption and fluorescence spectroscopy, steady-state photolysis, stability experiments, fluorescence quenching experiments, cyclic voltammetry, and electron spin resonance spin trapping (ESR-ST) experiments, collectively contribute to a comprehensive understanding of the photochemical mechanisms. Photoinitiation capacities of these systems are determined using real-time Fourier transformed infrared spectroscopy (RT-FTIR). Of particular interest is the revelation that, owing to the superior initiation ability of these dyes, high-resolution 3D patterns can be manufactured by direct laser write (DLW) technology and 3D printing. This underscores the efficient initiation of free radical polymerization processes by the newly developed dyes under both artificial and natural light sources, presenting an avenue for energy-saving, and environmentally friendly polymerization conditions.

2.
Small ; : e2400234, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426650

RESUMO

Investigations concerning the glyoxylate moiety as a photocleavable functional group for visible light photoinitiators, particularly in the initiation of free radical photopolymerization remain limited. This study introduces nine innovative carbazole-based ethyl glyoxylate derivatives (CEGs), which are synthesized and found to exhibit excellent photoinitiation abilities as monocomponent photoinitiating systems. Notably, these structures demonstrate robust absorption in the near-UV/visible range, surpassing the commercial photoinitiators. Moreover, the newly developed glyoxylate derivatives show higher acrylate function conversions compared to a benchmark photoinitiator (MBF) in free radical photopolymerization. Elucidation of the photoinitiation mechanism of CEGs is achieved through a comprehensive analysis involving the decarboxylation reaction and electron spin resonance spin trapping. Furthermore, their practical utility is confirmed during direct laser writing and 3D printing processes, enabling the successful fabrication of 3D printed objects. This study introduces pioneering concepts and effective strategies in the molecular design of novel photoinitiators, showcasing their potential for highly advantageous applications in 3D printing.

3.
Chemistry ; 30(11): e202302229, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37938172

RESUMO

The fabrication of structured zeolite adsorbents through photopolymerization-based 3D printing which offers a solution to the limitations of conventional shaping techniques has been demonstrated but many parameters still need to be optimized. In this study, we studied the influence of zeolite compensation cations on the photopolymerization and the composite's properties. Modified zeolites (LTA 4 A and FAU 13X exchanged with K+ , Li+ , Sr2+ , Ca2+ or Mg2+ ) were incorporated in PEGDA with BDMK as photoinitiator, and the formulation was cured under mild conditions (LED@405 nm, room temperature, under air). Our results indicate that the nature of zeolite compensation cations affects the colorimetric properties of polymer/zeolite composites: a better translucency parameter results in higher depth of cure. After calcination at 650 °C and complete removal of PEGDA, pure zeolitic monoliths were tested for adsorption of gas molecules of interest (carbon dioxide, dichlorobenzene and water). Structured 4 A and 13X monoliths obtained by 3D printing exhibit comparable adsorption capacity to commercial beads prepared from the same zeolites. This study enhances our understanding of the photopolymerization process involved in the production of polymer/zeolite composites. These composites are used in the fabrication of zeolitic objects through 3D printing, offering potential solutions to various environmental and dental challenges.

4.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762321

RESUMO

This paper explores the photochemical synthesis of noble metal nanoparticles, specifically gold (Au) and silver (Ag) nanoparticles, using a one-component photoinitiator system. The synthesis process involves visible light irradiation at a wavelength of 419 nm and an intensity of 250 mW/cm2. The radical-generating capabilities of the photoinitiators were evaluated using electron spin resonance (ESR) spectroscopy. The main objective of this study was to investigate how the concentration of metal salts influences the size and distribution of the nanoparticles. Proposed mechanisms for the photochemical formation of nanoparticles through photoinitiated radicals were validated using cyclic voltammetry. The results showed that the concentration of AgNO3 significantly impacted the size of silver nanoparticles, with diameters ranging from 1 to 5 nm at 1 wt% and 3 wt% concentrations, while increasing the concentration to 5 wt% led to an increase in the diameter of silver nanoparticles to 16 nm. When HAuCl4 was used instead of AgNO3, it was found that the average diameters of gold nanoparticles synthesized using both photoinitiators at different concentrations ranged between 1 and 4 nm. The findings suggest that variations in HAuCl4 concentration have minimal impact on the size of gold nanoparticles. The photoproduction of AuNPs was shown to be thermodynamically favorable, with the reduction of HAuCl4 to Au0 having ∆G values of approximately -3.51 and -2.96 eV for photoinitiators A and B, respectively. Furthermore, the photoreduction of Ag+1 to Ag0 was demonstrated to be thermodynamically feasible, with ∆G values of approximately -3.459 and -2.91 eV for photoinitiators A and B, respectively, confirming the effectiveness of the new photoinitiators on the production of nanoparticles. The synthesis of nanoparticles was monitored using UV-vis absorption spectroscopy, and their sizes were determined through particle size analysis of transmission electron microscopy (TEM) images.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Prata/química , Processos Fotoquímicos , Cloreto de Sódio , Cloreto de Sódio na Dieta , Tamanho da Partícula
5.
Angew Chem Int Ed Engl ; 62(47): e202309674, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37747841

RESUMO

Polystyrene (PS) particles were synthesized in ethanol/water mixture by dispersion polymerization using visible light irradiation, with either a N-heterocyclic carbene borane-based photoinitiating system (PIS) or a disulfide. With the full PIS and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as stabilizer, the size distributions were broad and the amount of PEGMA had a strong impact on the experiment reproducibility. The addition of a base solved the problem, leading to faster polymerizations, narrower size distributions and larger particles. With the disulfide as sole PIS, bigger and narrowly distributed PS particles were again formed. Quantitative conversion was achieved in each system, with particle size ranging between 100 and 350 nm. The use of poly(N-vinylpyrrolidone) as stabilizer led to significantly larger particles, up to 1.2 µm, with narrow size distributions. The production of such large latex particles by photoinitiated polymerizations is unprecedented.

6.
Opt Lett ; 48(15): 4157-4160, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527142

RESUMO

We report on a novel, to the best of our knowledge, active probe for scanning near-field optical microscopy (SNOM). A fluorescent nanosphere, acting as the secondary source, is grafted in an electrostatic manner at the apex of a polymer tip integrated into the extremity of an optical fiber. Thanks to the high photostability and sensitivity of the secondary source, the near-field interaction with a gold nanocube is investigated. It is shown that the spatial resolution is well defined by the size of the fluorescent nanosphere. The polarization-dependent near-field images, which are consistent with the simulation, are ascribed to the local excitation rate enhancement. Meanwhile, measurement of the distance-dependent fluorescence lifetime of the nanosphere provides strong evidence that the local density of states is modified so that extra information on nano-emitters can be extracted during near-field scanning. This advanced active probe can thus potentially broaden the range of applications to include nanoscale thermal imaging, biochemical sensors, and the manipulation of nanoparticles.

7.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37631435

RESUMO

In this study, we developed highly efficient nonwoven membranes by modifying the surface of polypropylene (PP) and poly(butylene terephthalate) (PBT) through photo-grafting polymerization. The nonwoven membrane surfaces of PP and PBT were grafted with poly(ethylene glycol) diacrylate (PEGDA) in the presence of benzophenone (BP) and metal salt. We immobilized tertiary amine groups as BP synergists on commercial nonwoven membranes to improve PP and PBT surfaces. In situ Ag, Au, and Au/Ag nanoparticle formation enhances the nonwoven membrane surface. SEM, FTIR, and EDX were used to analyze the surface. We evaluated modified nonwoven membranes for photocatalytic activity by degrading methylene blue (MB) under LED and sunlight. Additionally, we also tested modified membranes for antibacterial activity against E. coli. The results indicated that the modified membranes exhibited superior efficiency in removing MB from water. The PBT showed the highest efficiency in dye removal, and bimetallic nanoparticles were more effective than monometallic. Modified membranes exposed to sunlight had higher efficiency than those exposed to LED light, with the PBT/Au/Ag membrane showing the highest dye removal at 97% within 90 min. The modified membranes showed reuse potential, with dye removal efficiency decreasing from 97% in the first cycle to 85% in the fifth cycle.

8.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108951

RESUMO

Fomitiporia mediterranea (Fmed) is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of Fmed in ECD etiology, justifying an increase in research interest related to Fmed's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs. white rot) between biomolecular decay pathways induced by Basidiomycota species, our research aims to investigate the potential for non-enzymatic mechanisms adopted by Fmed, which is typically described as a white rot fungus. Our results demonstrate how, in liquid culture reproducing nutrient restriction conditions often found in wood, Fmed can produce low molecular weight compounds, the hallmark of the non-enzymatic "chelator-mediated Fenton" (CMF) reaction, originally described for brown rot fungi. CMF reactions can redox cycle with ferric iron, generating hydrogen peroxide and ferrous iron, necessary reactants leading to hydroxyl radical (•OH) production. These observations led to the conclusion that a non-enzymatic radical-generating CMF-like mechanism may be utilized by Fmed, potentially together with an enzymatic pool, to contribute to degrading wood constituents; moreover, indicating significant variability between strains.

9.
Small ; 19(50): e2300772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36866501

RESUMO

Indolo[3,2-a]carbazole alkaloids have drawn a growing interest in recent years owing to their potential electrical and optical properties. With 5,12-dihydroindolo[3,2-a]carbazole serving as the scaffold, two novel carbazole derivatives are synthesized in this study. Both compounds are extremely soluble in water, with solubility surpassing 7% in weight. Intriguingly, the introduction of aromatic substituents contributed to drastically reduce the π-stacking ability of carbazole derivatives, while the presence of the sulfonic acid groups enables the resulting carbazoles remarkably soluble in water, allowing them to be used as especially efficient water-soluble PIs in conjunction with co-initiators, i.e., triethanolamine and the iodonium salt, respectively, employed as electron donor and acceptor. Surprisingly, multi-component photoinitiating systems based on these synthesized carbazole derivatives could be used for the in situ preparation of hydrogels containing silver nanoparticles via laser write procedure with a light emitting diode (LED)@405 nm as light source, and the produced hydrogels display antibacterial activity against Escherichia coli.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Água , Prata , Carbazóis
10.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904530

RESUMO

The copper II complex's novel benzimidazole Schiff base ligands were manufactured and gauged as a new photoredox catalyst/photoinitiator amalgamated with triethylamine (TEA) and iodonium salt (Iod) for the polymerization of ethylene glycol diacrylate while exposed to visible light by an LED Lamp at 405 nm with an intensity of 543 mW/cm2 at 28 °C. Gold and silver nanoparticles were obtained through the reactivity of the copper II complexes with amine/Iod salt. The size of NPs was around 1-30 nm. Lastly, the high performance of copper II complexes for photopolymerization containing nanoparticles is presented and examined. Ultimately, the photochemical mechanisms were observed using cyclic voltammetry. The preparation of the polymer nanocomposite nanoparticles in situ was photogenerated during the irradiation LED at 405 nm with an intensity of 543 mW/cm2 at 28 °C process. UV-Vis, FTIR, and TEM analyses were utilized for the determination of the generation of AuNPs and AgNPs which resided within the polymer matrix.

11.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677685

RESUMO

In mild conditions (under air, room temperature, no monomer purification and without any energy activation), redox free radical polymerization (RFRP) is considered as one of the most effective methods to polymerize (meth)acrylate monomers. In the past several years, there has been a growing interest in research on the development of new redox initiating systems (RISs), thanks mainly to the evolution of toxicity labeling and the stability issue of the current RIS based on peroxide and aromatic amine. In this study, a new, low-toxicity RIS based on thiophenium salt as the oxidant species is presented with various reductive species. The reactivity and the stability of the proposed RISs are investigated and the synthesis of new thiophenium salts reported.

12.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679223

RESUMO

Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed.

13.
ACS Omega ; 8(3): 3207-3220, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713746

RESUMO

Benzophenone derivatives were evaluated as new photoinitiators in combination with triethylamine (TEA) and iodonium salt (Iod) for very rapid and efficient formation of metal nanoparticles in an organic solvent, by which silver and gold ions were reduced under light at 419 nm (photoreactor) with an irradiation intensity of 250 microwatts/cm2. The new benzophenone derivatives combined with TEA/Iod salt showed good production of metal nanoparticles (Au0 and Ag0) and a small size of nanoparticles of around 4-13 nm. The photochemical mechanisms for the production of initiating radicals were studied using cyclic voltammetry, where a negative ΔG of around -1.96 eV was obtained, which made the process favorable. The obtained results proved the formation of amine and phenyl radicals, which led to the reduction of gold III chloride or silver ions to the gold and silver NPs. The UV-vis spectroscopy technique was used as a very beneficial tool for the surface plasmon resonance band detection of metal nanoparticles. To sum up the results, we have observed that nanoparticles (NPs) were distributed differently in different photoinitiator systems and the particle size also changed by changing the system of initiation. In comparison to the system alone, not only were the nanoparticles smaller but they were also generated within a shorter period of irradiation time for the system BP\Iod\TEA. Finally, the quenching process of benzophenone fluorescence by the gold and silver nanoparticles was investigated.

14.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501655

RESUMO

In order to discuss the polymerization effect from the substituted position and methoxy group of Type I photinitiators, a series of naphthalene-based oxime esters was designed and synthesized. Compared to the 2-naphthalene-substituted compound, the UV absorption region of the 1-naphthalene-based compound was greatly improved. In addition, the methoxy substitution exhibited longer absorption characteristics than did the methoxy-free one. The photochemical reaction behavior of these novel compounds was also studied by photolysis, cyclic voltammetry (CV), and electron spin resonance (ESR) experiments. Finally, the initiation abilities of naphthalene-based oxime esters toward trimethylolpropane triacrylate (TMPTA) monomer were conducted through the photo-DSC instrument under UV and a 405@nm LED lamp. Remarkedly, the naphthalene-based oxime ester (NA-3) that contains 1-naphthalene with o-methoxy substituent showed the rather red-shifted absorption region with the highest final conversion efficiency under UV (46%) and 405@nm LED (41%) lamp irradiation.

15.
PLoS One ; 17(7): e0270679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35881581

RESUMO

The kinetics and the conversion features of two 3-component systems (A/B/N), based on the proposed new kinetic schemes of Mokbel and Mau et al, in which a visible LED is used to excite a copper complex to its excited triplet state (G*). The coupling of G* with iodonium salt and ethyl 4-(dimethylamino)benzoate (EDB) produces both free radical polymerization (FRP) of acrylates and the free radical promoted cationic polymerization (CP) of epoxides using various new copper complex as the initiator. Higher FRP and CP conversion can be achieved by co-additive of [B] and N, via the dual function of (i) regeneration [A], and (ii) generation of extra radicals. The interpenetrated polymer network (IPN) capable of initiating both FRP and CP in a blend of TMPTA and EPOX. The synergic effects due to CP include: (i) CP can increase viscosity limiting the diffusional oxygen replenishment; (ii) the cation also acts as a diluting agent for the IPN network, and (iii) the exothermic property of the CP. The catalytic cycle, synergic effects, and the oxygen inhibition are theoretically confirmed to support the experimental hypothesis. The measured results of Mokbel and Mau et al are well analyzed and matching the predicted features of our modeling.


Assuntos
Cobre , Luz , Cátions , Radicais Livres , Oxigênio , Polímeros
17.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631880

RESUMO

This work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.g., N-phenylglycine-NPG). Interestingly, high final conversions and high polymerization rates were obtained for both compounds using two and three-component photoinitiating systems (Cu1 (or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)). The new proposed copper complexes were also used for direct laser write experiments involving a laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor at 395 nm. To explain the obtained polymerization results, different methods and characterization techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy (RT-FTIR), emission spectroscopy and cyclic voltammetry.

18.
Macromol Rapid Commun ; 43(19): e2200314, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35526219

RESUMO

In both organic and polymer synthesis, photochemistry of charge transfer complexes (CTCs) is considered as a powerful approach to expand visible-light-driven radical chemistry reaction. One reports herein on the development of a class of useful CTCs using pyridinium salts as efficient electron acceptors (combined with N, N, 3,5-tetramethylaniline, TMA) to achieve a multiwavelength (375-560 nm) metal-free LED photopolymerization process under mild conditions (open to air, without monomer purification and inhibitor removal). The UV-vis absorption spectra and molecular modeling simultaneously verify its potential blue-green absorbing wavelength range. Also, their good thermal initiation behavior at relatively low temperatures makes it easier to achieve thick samples and/or polymerization in the shadow region in practice. More importantly, with excellent photoinitiating capability, the formulation is successfully applied to direct laser write (DLW) and high-resolution 3D printing, yielding a series of objects with well-defined structures, such as letters, ring, solid squares, and chess pieces. These new pyridinium salt acceptors further extend the applicability to visible photopolymerizable resins and additive-containing formulations for efficient surface and deep curing.


Assuntos
Polímeros , Sais , Fotoquímica , Polimerização , Polímeros/química , Impressão Tridimensional , Sais/química
19.
Dent Mater ; 38(7): 1108-1116, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35589440

RESUMO

OBJECTIVE: To evaluate polymerizable acylthioureas as reducing agents in two-component dental materials. METHODS: Acylthioureas 1 and 2 were synthesized and characterized by 1H and 13C NMR spectroscopy. Self-cured composites based on the redox initiator system cumene hydroperoxide/acylthiourea 1 or 2/copper(II) acetylacetonate were formulated. Various amounts of cumene hydroperoxide, acylthiourea and copper(II) acetylacetonate were used. An equimolar cumene hydroperoxide/acylthiourea ratio was selected for each self-cured composite. The reactivity and the final double-bond conversions obtained with these two-component materials was assessed using RT-FTIR spectroscopy. The flexural strength and modulus were measured using a three-point bending setup, after storage of the specimens for 45 min at 37 °C (dry) and for 24 h in water at 37 °C. The working time of each composite was determined using an oscillating rheometer. RESULTS: Acylthioureas 1 and 2 were synthesized in three to four steps. In combination with cumene hydroperoxide and copper(II) acetylacetonate, both prepared compounds were found to be effective reducing agents. The higher the amount of cumene hydroperoxide and acylthiourea in the self-cured composite, the higher the flexural modulus and the faster the polymerization (lower working times). Similarly, it was shown that increased copper(II) acetylacetonate amounts result in an acceleration of the curing as well as in an improvement of the mechanical properties. The self-cured composite containing 1.25 wt% of cumene hydroperoxide in the monomer mixture of the first paste and 2.00 wt% of acylthiourea 1 in the monomer mixture of the second one provided excellent mechanical properties as well as an optimal working time. SIGNIFICANCE: Polymerizable acylthioureas can be used as reducing agents in two-component dental materials. Due to the presence of the methacrylate group, such structures should be efficiently incorporated into the network during polymerization and should not leach out of the composite after curing. As a result, such dental materials are not expected to exhibit bitterness properties.


Assuntos
Resinas Compostas , Substâncias Redutoras , Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Materiais Dentários/química , Teste de Materiais , Metacrilatos/química , Maleabilidade , Polimerização , Tioureia
20.
Polymers (Basel) ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335489

RESUMO

This article presents, for the first time, the efficacy and curing depth analysis of photo-thermal dual polymerization in metal (Fe) polymer composites for 3D printing of a three-component (A/B/M) system based on the proposed mechanism of our group, in which the co initiators A and B are Irgacure-369 and charge-transfer complexes (CTC), respectively, and the monomer M is filled by Fe. Our formulas show the depth of curing (Zc) is an increasing function of the light intensity, but a decreasing function of the Fe and photoinitiator concentrations. Zc is enhanced by the additive [B], which produces extra thermal radical for polymerization under high temperature. The heat (or temperature) increase in the system has two components: (i) due to the light absorption of Fe filler and (ii) heat released from the exothermic photopolymerization of the monomer. The heat is transported to the additive (or co-initiator) [B] to produce extra radicals and enhance the monomer conversion function (CF). The Fe filler leads to a temperature increase but also limits the light penetration, leading to lower CF and Zc, which could be overcome by the additive initiator [B] in thick polymers. Optimal Fe for maximal CF and Zc are explored theoretically. Measured data are analyzed based on our derived formulas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...